Logo Search packages:      
Sourcecode: eigen3 version File versions  Download package

Constants.h
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_CONSTANTS_H
#define EIGEN_CONSTANTS_H

/** This value means that a quantity is not known at compile-time, and that instead the value is
  * stored in some runtime variable.
  *
  * Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix.
  */
const int Dynamic = -1;

/** This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>().
  * The value Infinity there means the L-infinity norm.
  */
const int Infinity = -1;

/** \defgroup flags Flags
  * \ingroup Core_Module
  *
  * These are the possible bits which can be OR'ed to constitute the flags of a matrix or
  * expression.
  *
  * It is important to note that these flags are a purely compile-time notion. They are a compile-time property of
  * an expression type, implemented as enum's. They are not stored in memory at runtime, and they do not incur any
  * runtime overhead.
  *
  * \sa MatrixBase::Flags
  */

/** \ingroup flags
  *
  * for a matrix, this means that the storage order is row-major.
  * If this bit is not set, the storage order is column-major.
  * For an expression, this determines the storage order of
  * the matrix created by evaluation of that expression. 
  * \sa \ref TopicStorageOrders */
00061 const unsigned int RowMajorBit = 0x1;

/** \ingroup flags
  *
  * means the expression should be evaluated by the calling expression */
00066 const unsigned int EvalBeforeNestingBit = 0x2;

/** \ingroup flags
  *
  * means the expression should be evaluated before any assignment */
00071 const unsigned int EvalBeforeAssigningBit = 0x4;

/** \ingroup flags
  *
  * Short version: means the expression might be vectorized
  *
  * Long version: means that the coefficients can be handled by packets
  * and start at a memory location whose alignment meets the requirements
  * of the present CPU architecture for optimized packet access. In the fixed-size
  * case, there is the additional condition that it be possible to access all the
  * coefficients by packets (this implies the requirement that the size be a multiple of 16 bytes,
  * and that any nontrivial strides don't break the alignment). In the dynamic-size case,
  * there is no such condition on the total size and strides, so it might not be possible to access
  * all coeffs by packets.
  *
  * \note This bit can be set regardless of whether vectorization is actually enabled.
  *       To check for actual vectorizability, see \a ActualPacketAccessBit.
  */
00089 const unsigned int PacketAccessBit = 0x8;

#ifdef EIGEN_VECTORIZE
/** \ingroup flags
  *
  * If vectorization is enabled (EIGEN_VECTORIZE is defined) this constant
  * is set to the value \a PacketAccessBit.
  *
  * If vectorization is not enabled (EIGEN_VECTORIZE is not defined) this constant
  * is set to the value 0.
  */
const unsigned int ActualPacketAccessBit = PacketAccessBit;
#else
const unsigned int ActualPacketAccessBit = 0x0;
#endif

/** \ingroup flags
  *
  * Short version: means the expression can be seen as 1D vector.
  *
  * Long version: means that one can access the coefficients
  * of this expression by coeff(int), and coeffRef(int) in the case of a lvalue expression. These
  * index-based access methods are guaranteed
  * to not have to do any runtime computation of a (row, col)-pair from the index, so that it
  * is guaranteed that whenever it is available, index-based access is at least as fast as
  * (row,col)-based access. Expressions for which that isn't possible don't have the LinearAccessBit.
  *
  * If both PacketAccessBit and LinearAccessBit are set, then the
  * packets of this expression can be accessed by packet(int), and writePacket(int) in the case of a
  * lvalue expression.
  *
  * Typically, all vector expressions have the LinearAccessBit, but there is one exception:
  * Product expressions don't have it, because it would be troublesome for vectorization, even when the
  * Product is a vector expression. Thus, vector Product expressions allow index-based coefficient access but
  * not index-based packet access, so they don't have the LinearAccessBit.
  */
00125 const unsigned int LinearAccessBit = 0x10;

/** \ingroup flags
  *
  * Means the expression has a coeffRef() method, i.e. is writable as its individual coefficients are directly addressable.
  * This rules out read-only expressions.
  *
  * Note that DirectAccessBit and LvalueBit are mutually orthogonal, as there are examples of expression having one but note
  * the other:
  *   \li writable expressions that don't have a very simple memory layout as a strided array, have LvalueBit but not DirectAccessBit
  *   \li Map-to-const expressions, for example Map<const Matrix>, have DirectAccessBit but not LvalueBit
  *
  * Expressions having LvalueBit also have their coeff() method returning a const reference instead of returning a new value.
  */
00139 const unsigned int LvalueBit = 0x20;

/** \ingroup flags
  *
  * Means that the underlying array of coefficients can be directly accessed as a plain strided array. The memory layout
  * of the array of coefficients must be exactly the natural one suggested by rows(), cols(),
  * outerStride(), innerStride(), and the RowMajorBit. This rules out expressions such as Diagonal, whose coefficients,
  * though referencable, do not have such a regular memory layout.
  *
  * See the comment on LvalueBit for an explanation of how LvalueBit and DirectAccessBit are mutually orthogonal.
  */
00150 const unsigned int DirectAccessBit = 0x40;

/** \ingroup flags
  *
  * means the first coefficient packet is guaranteed to be aligned */
00155 const unsigned int AlignedBit = 0x80;

const unsigned int NestByRefBit = 0x100;

// list of flags that are inherited by default
const unsigned int HereditaryBits = RowMajorBit
                                  | EvalBeforeNestingBit
                                  | EvalBeforeAssigningBit;

/** \defgroup enums Enumerations
  * \ingroup Core_Module
  *
  * Various enumerations used in %Eigen. Many of these are used as template parameters.
  */

/** \ingroup enums
  * Enum containing possible values for the \p Mode parameter of 
  * MatrixBase::selfadjointView() and MatrixBase::triangularView(). */
enum {
  /** View matrix as a lower triangular matrix. */
00175   Lower=0x1,                      
  /** View matrix as an upper triangular matrix. */
00177   Upper=0x2,                      
  /** %Matrix has ones on the diagonal; to be used in combination with #Lower or #Upper. */
00179   UnitDiag=0x4, 
  /** %Matrix has zeros on the diagonal; to be used in combination with #Lower or #Upper. */
00181   ZeroDiag=0x8,
  /** View matrix as a lower triangular matrix with ones on the diagonal. */
00183   UnitLower=UnitDiag|Lower, 
  /** View matrix as an upper triangular matrix with ones on the diagonal. */
00185   UnitUpper=UnitDiag|Upper,
  /** View matrix as a lower triangular matrix with zeros on the diagonal. */
00187   StrictlyLower=ZeroDiag|Lower, 
  /** View matrix as an upper triangular matrix with zeros on the diagonal. */
00189   StrictlyUpper=ZeroDiag|Upper,
  /** Used in BandMatrix and SelfAdjointView to indicate that the matrix is self-adjoint. */
00191   SelfAdjoint=0x10
};

/** \ingroup enums
  * Enum for indicating whether an object is aligned or not. */
enum { 
  /** Object is not correctly aligned for vectorization. */
00198   Unaligned=0, 
  /** Object is aligned for vectorization. */
00200   Aligned=1 
};

enum { ConditionalJumpCost = 5 };

/** \ingroup enums
 * Enum used by DenseBase::corner() in Eigen2 compatibility mode. */
// FIXME after the corner() API change, this was not needed anymore, except by AlignedBox
// TODO: find out what to do with that. Adapt the AlignedBox API ?
00209 enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };

/** \ingroup enums
  * Enum containing possible values for the \p Direction parameter of
  * Reverse, PartialReduxExpr and VectorwiseOp. */
00214 enum DirectionType { 
  /** For Reverse, all columns are reversed; 
    * for PartialReduxExpr and VectorwiseOp, act on columns. */
00217   Vertical, 
  /** For Reverse, all rows are reversed; 
    * for PartialReduxExpr and VectorwiseOp, act on rows. */
00220   Horizontal, 
  /** For Reverse, both rows and columns are reversed; 
    * not used for PartialReduxExpr and VectorwiseOp. */
00223   BothDirections 
};

enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct };

/** \internal \ingroup enums
  * Enum to specify how to traverse the entries of a matrix. */
enum {
  /** \internal Default traversal, no vectorization, no index-based access */
00232   DefaultTraversal,
  /** \internal No vectorization, use index-based access to have only one for loop instead of 2 nested loops */
00234   LinearTraversal,
  /** \internal Equivalent to a slice vectorization for fixed-size matrices having good alignment
    * and good size */
00237   InnerVectorizedTraversal,
  /** \internal Vectorization path using a single loop plus scalar loops for the
    * unaligned boundaries */
00240   LinearVectorizedTraversal,
  /** \internal Generic vectorization path using one vectorized loop per row/column with some
    * scalar loops to handle the unaligned boundaries */
00243   SliceVectorizedTraversal,
  /** \internal Special case to properly handle incompatible scalar types or other defecting cases*/
00245   InvalidTraversal
};

/** \internal \ingroup enums
  * Enum to specify whether to unroll loops when traversing over the entries of a matrix. */
enum {
  /** \internal Do not unroll loops. */
00252   NoUnrolling,
  /** \internal Unroll only the inner loop, but not the outer loop. */
00254   InnerUnrolling,
  /** \internal Unroll both the inner and the outer loop. If there is only one loop, 
    * because linear traversal is used, then unroll that loop. */
00257   CompleteUnrolling
};

/** \ingroup enums
  * Enum containing possible values for the \p _Options template parameter of
  * Matrix, Array and BandMatrix. */
enum {
  /** Storage order is column major (see \ref TopicStorageOrders). */
00265   ColMajor = 0,
  /** Storage order is row major (see \ref TopicStorageOrders). */
00267   RowMajor = 0x1,  // it is only a coincidence that this is equal to RowMajorBit -- don't rely on that
  /** \internal Align the matrix itself if it is vectorizable fixed-size */
00269   AutoAlign = 0,
  /** \internal Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated, may still be requested to be aligned) */ // FIXME --- clarify the situation
00271   DontAlign = 0x2
};

/** \ingroup enums
  * Enum for specifying whether to apply or solve on the left or right. */
enum {
  /** Apply transformation on the left. */
00278   OnTheLeft = 1,  
  /** Apply transformation on the right. */
00280   OnTheRight = 2  
};

/* the following could as well be written:
 *   enum NoChange_t { NoChange };
 * but it feels dangerous to disambiguate overloaded functions on enum/integer types.
 * If on some platform it is really impossible to get rid of "unused variable" warnings, then
 * we can always come back to that solution.
 */
00289 struct NoChange_t {};
namespace {
  EIGEN_UNUSED NoChange_t NoChange;
}

00294 struct Sequential_t {};
namespace {
  EIGEN_UNUSED Sequential_t Sequential;
}

00299 struct Default_t {};
namespace {
  EIGEN_UNUSED Default_t Default;
}

/** \internal \ingroup enums
  * Used in AmbiVector. */
enum {
  IsDense         = 0,
  IsSparse
};

/** \ingroup enums
  * Used as template parameter in DenseCoeffBase and MapBase to indicate 
  * which accessors should be provided. */
00314 enum AccessorLevels {
  /** Read-only access via a member function. */
00316   ReadOnlyAccessors, 
  /** Read/write access via member functions. */
00318   WriteAccessors, 
  /** Direct read-only access to the coefficients. */
00320   DirectAccessors, 
  /** Direct read/write access to the coefficients. */
00322   DirectWriteAccessors
};

/** \ingroup enums
  * Enum with options to give to various decompositions. */
00327 enum DecompositionOptions {
  /** \internal Not used (meant for LDLT?). */
00329   Pivoting            = 0x01, 
  /** \internal Not used (meant for LDLT?). */
00331   NoPivoting          = 0x02, 
  /** Used in JacobiSVD to indicate that the square matrix U is to be computed. */
00333   ComputeFullU        = 0x04,
  /** Used in JacobiSVD to indicate that the thin matrix U is to be computed. */
00335   ComputeThinU        = 0x08,
  /** Used in JacobiSVD to indicate that the square matrix V is to be computed. */
00337   ComputeFullV        = 0x10,
  /** Used in JacobiSVD to indicate that the thin matrix V is to be computed. */
00339   ComputeThinV        = 0x20,
  /** Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify
    * that only the eigenvalues are to be computed and not the eigenvectors. */
00342   EigenvaluesOnly     = 0x40,
  /** Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify
    * that both the eigenvalues and the eigenvectors are to be computed. */
00345   ComputeEigenvectors = 0x80,
  /** \internal */
00347   EigVecMask = EigenvaluesOnly | ComputeEigenvectors,
  /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should
    * solve the generalized eigenproblem \f$ Ax = \lambda B x \f$. */
00350   Ax_lBx              = 0x100,
  /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should
    * solve the generalized eigenproblem \f$ ABx = \lambda x \f$. */
00353   ABx_lx              = 0x200,
  /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should
    * solve the generalized eigenproblem \f$ BAx = \lambda x \f$. */
00356   BAx_lx              = 0x400,
  /** \internal */
00358   GenEigMask = Ax_lBx | ABx_lx | BAx_lx
};

/** \ingroup enums
  * Possible values for the \p QRPreconditioner template parameter of JacobiSVD. */
00363 enum QRPreconditioners {
  /** Do not specify what is to be done if the SVD of a non-square matrix is asked for. */
00365   NoQRPreconditioner,
  /** Use a QR decomposition without pivoting as the first step. */
00367   HouseholderQRPreconditioner,
  /** Use a QR decomposition with column pivoting as the first step. */
00369   ColPivHouseholderQRPreconditioner,
  /** Use a QR decomposition with full pivoting as the first step. */
00371   FullPivHouseholderQRPreconditioner
};

#ifdef Success
#error The preprocessor symbol 'Success' is defined, possibly by the X11 header file X.h
#endif

/** \ingroups enums
  * Enum for reporting the status of a computation. */
enum ComputationInfo {
  /** Computation was successful. */
  Success = 0,        
  /** The provided data did not satisfy the prerequisites. */
  NumericalIssue = 1, 
  /** Iterative procedure did not converge. */
  NoConvergence = 2
};

/** \ingroup enums
  * Enum used to specify how a particular transformation is stored in a matrix.
  * \sa Transform, Hyperplane::transform(). */
00392 enum TransformTraits {
  /** Transformation is an isometry. */
00394   Isometry      = 0x1,
  /** Transformation is an affine transformation stored as a (Dim+1)^2 matrix whose last row is 
    * assumed to be [0 ... 0 1]. */
00397   Affine        = 0x2,
  /** Transformation is an affine transformation stored as a (Dim) x (Dim+1) matrix. */
00399   AffineCompact = 0x10 | Affine,
  /** Transformation is a general projective transformation stored as a (Dim+1)^2 matrix. */
00401   Projective    = 0x20
};

/** \internal \ingroup enums
  * Enum used to choose between implementation depending on the computer architecture. */
00406 namespace Architecture
{
  enum Type {
    Generic = 0x0,
    SSE = 0x1,
    AltiVec = 0x2,
#if defined EIGEN_VECTORIZE_SSE
    Target = SSE
#elif defined EIGEN_VECTORIZE_ALTIVEC
    Target = AltiVec
#else
    Target = Generic
#endif
  };
}

/** \internal \ingroup enums
  * Enum used as template parameter in GeneralProduct. */
enum { CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct };

/** \internal \ingroup enums
  * Enum used in experimental parallel implementation. */
00428 enum Action {GetAction, SetAction};

/** The type used to identify a dense storage. */
00431 struct Dense {};

/** The type used to identify a matrix expression */
00434 struct MatrixXpr {};

/** The type used to identify an array expression */
00437 struct ArrayXpr {};

#endif // EIGEN_CONSTANTS_H

Generated by  Doxygen 1.6.0   Back to index