Logo Search packages:      
Sourcecode: eigen3 version File versions  Download package

Classes | Public Types | Public Member Functions | Protected Attributes

SimplicialCholesky< _MatrixType, _UpLo > Class Template Reference

A direct sparse Cholesky factorization. More...

#include <SimplicialCholesky.h>

Collaboration diagram for SimplicialCholesky< _MatrixType, _UpLo >:
Collaboration graph
[legend]

List of all members.

Classes

struct  keep_diag

Public Types

enum  { UpLo = _UpLo }
typedef SparseMatrix< Scalar,
ColMajor, Index > 
CholMatrixType
typedef MatrixType::Index Index
typedef _MatrixType MatrixType
typedef MatrixType::RealScalar RealScalar
typedef MatrixType::Scalar Scalar
typedef Matrix< Scalar,
MatrixType::ColsAtCompileTime, 1 > 
VectorType

Public Member Functions

template<typename Rhs , typename Dest >
void _solve (const MatrixBase< Rhs > &b, MatrixBase< Dest > &dest) const
void analyzePattern (const MatrixType &a)
Index cols () const
SimplicialCholeskycompute (const MatrixType &matrix)
template<typename Stream >
void dumpMemory (Stream &s)
void factorize (const MatrixType &a)
ComputationInfo info () const
 Reports whether previous computation was successful.
const PermutationMatrix
< Dynamic > & 
permutationP () const
const PermutationMatrix
< Dynamic > & 
permutationPinv () const
Index rows () const
SimplicialCholeskysetMode (SimplicialCholeskyMode mode)
 SimplicialCholesky (const MatrixType &matrix)
template<typename Rhs >
const internal::solve_retval
< SimplicialCholesky, Rhs > 
solve (const MatrixBase< Rhs > &b) const

Protected Attributes

bool m_analysisIsOk
VectorType m_diag
bool m_factorizationIsOk
ComputationInfo m_info
bool m_isInitialized
bool m_LDLt
CholMatrixType m_matrix
VectorXi m_nonZerosPerCol
PermutationMatrix< Dynamic > m_P
VectorXi m_parent
PermutationMatrix< Dynamic > m_Pinv

Detailed Description

template<typename _MatrixType, int _UpLo = Lower>
class SimplicialCholesky< _MatrixType, _UpLo >

A direct sparse Cholesky factorization.

This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices X and B can be either dense or sparse.

Template Parameters:
_MatrixTypethe type of the sparse matrix A, it must be a SparseMatrix<>
_UpLothe triangular part that will be used for the computations. It can be Lower or Upper. Default is Lower.

Definition at line 83 of file SimplicialCholesky.h.


The documentation for this class was generated from the following file:

Generated by  Doxygen 1.6.0   Back to index